This is expected to occur in all frequencies, but the researchers will be looking for noise that can't be explained away, such as radio waves emitted from nearby electronics. Because the frequency the Holometer is working at is extremely high -- millions of cycles per second -- the motions of normal matter are not likely to affect results, which makes matters a little less complicated.
"If we find a noise we can't get rid of, we might be detecting something fundamental about nature -- a noise that is intrinsic to space-time," said Fermilab physicist Aaron Chou, lead scientist and project manager for the Holometer. "It's an exciting moment for physics. A positive result will open a whole new avenue of questioning about how space works."
This will allow the machine to gauge the limits of the universe's ability to store information. If there are a finite number of bits that tell you how to locate something, for instance, there will come a point at which no more information is available.
"We want to find out whether space-time is a quantum system just like matter is," said Fermilab Center for Particle Astrophysics director Craig Hogan. "If we see something, it will completely change ideas about space we've used for thousands of years."
The Holometer experiment is expected to continue to gather data over the coming year.